
Recovering the Rationale of Change from
Process Model Revision Histories: a taxonomy
of process model change patterns, detection

algorithms and their implementation
Research Report

Selim Erol

Created: Feb 14, 2015, Last update: July 3, 2015

1 Introduction

Large to medium sized organizations document their business process architecture in some way.
On the one hand informal process descriptions are used for the goal of documentation, analysis,
knowledge transfer and governance. On the other hand business processes are described through
(semi-)formal languages (e.g. EPC [Scheer, 1998], BPMN[OMG, 2011]) that potentially allow for
their automation and for the orchestration of related software services and applications [Giaglis,
2001; Davies et al., 2006]. The latter kind of artifacts, commonly referred to as process models,
are created, stored and maintained by means of software-based modeling environments (e.g. ARIS
Business Architect1). These modeling environments typically consist at least of a model editor and a
model repository. The repository is used to store larger collections of process models, enable version
management and efficient model retrieval. Such process model repositories often contain hundreds
to thousands of process model artifacts and – in case some kind of versioning exists – also a multiple
of model versions.

In practice process models are developed in an iterative manner. From vague ideas of the process
in focus to informal process descriptions and finally deployable workflow specifications and so forth.
Process models are furthermore continuously adapted to changing business requirements. Keeping
track of model changes is typically accomplished by an change log or a revision history. In the first
case change operations are logged by storing at least the order of an operation, the type and the
target object. Thus, a sequence of change operations is obtained that exactly shows the actions a
modeler has undertaken to change a model. In the case of the revision history approach snapshots
at discrete points in time are taken and stored along with a time-stamp. Model changes are then
reproducible by comparing two subsequent revisions revealing only the substantial changes but hiding
all intermediate changes that led to the final change. Both approaches have their advantages and
disadvantages which have been broadly discussed in literature, e.g. in [Mens, 2002]. In practice,
the revision history approach has gained ground in both model and software development tools.

1http://www.aris.com

1

Versioning systems like SVN2 are exemplary implementations of the revision history approach. One
of the drawbacks of the revision history approach is that the rationale of changes to a process model
is not easily recoverable if not documented explicitly or implicitly through a change log. By rationale
the reason for a change is meant which subsequently is transformed into an operational change of
a process model artifact. The above mentioned problem is due to the fact that compound changes
reflecting a change rationale need to be “guessed” a posteriori from a set of unrelated atomic change
operations which in turn have been derived from a simple revision comparison.

To tackle the above mentioned challenges an approach has been chosen that builds upon the
concept of change patterns formulated in Weber et al. [2007] and extends this concept in various
ways. First, by conducting an explorative study of changes in a highly dynamic process modeling
environment – a cloud-based modeling environment – and subsequent classification of compound
changes through change patterns. Second, by introducing a pattern language allowing the descrip-
tion of typical compound changes (change patterns) in an easy, practicable but still comprehensible
way. Second, by formulating algorithms for recovering compound changes from revision compar-
isons. Finally, through an prototypical implementation in a respective modeling environment and it’s
subsequent evaluation.

In the subsequent sections of this paper the approach for describing change patterns through a
pattern language and related detection algorithms are described in detail. In section 2 basic concepts
of revision history, revision comparison and compound changes are discussed. In section 3 the
pattern based approach to specifying compound changes is presented. Section 4 is dedicated to the
formulation of respective detection algorithms. In the last section a prototypical implementation is
presented along with it’s evaluation. Results are summarized and discussed in the last section.

2 Basic concepts

2.1 Process model

For the following considerations a simple meta-model for process models has been used. Accordingly
a process model M is a finite set of model elements ṁ ∈M where each model element is classified
into three distinct types of model elements a..activity, g..gateway, e..sequence flow edge. Instances
of such classes form subsets of M : the set of all activities A = {a0..an}, the set of all gateways
G = {g0..am}, the set of all edges E = {e0..ek} where n,m, k ∈ N. Thus the set of model elements
M can be described as a three tuple (A,G,E). Where A is a finite set of activities, G is a finite set of
logical gateways and E is a finite set of directed sequence flow edges. E represents different sequences
of A and G. To be precise it can specified as a subset E ⊆ (A×G)∪ (G×A)∪ (A×A)∪ (G×G).
Different types of gateways {×,+, ◦} exist where type T (G) = × refers to an exclusive gateway,
type T (G) = + refers to a parallel gateway and type T (G) = ◦ refers to an inclusive gateway.
Gateways are also classified according to their role in the process model. We distinguish the set
of split gateways Gs which includes all gateways g that have at least two outgoing sequence flow
edges and have exactly one ingoing sequence flow edge, formally Gs = {g ∈ G | OUT (g) ≥
2 ∧ IN(g) = 1} where OUT is a function that counts all outgoing and IN is a function that
counts all ingoing edges for a given gateway node and a set of join gateways Gj that is defined as
Gj = {g ∈ G | IN(g) ≥ 2 ∧ OUT (g) = 1}. Figure 1 shows a UML3 diagram of the types of
model elements incorporated for subsequent considerations. Note that we use a rather general and

2https://subversion.apache.org
3http://www.uml.org

2

relaxed meta-model and formalization. This is due to the requirement that we want to cover as
well process models in progress that are not complete in the sense of executability. We also did not
include events in the meta-model as we wanted to provide a general meta-model that abstracts from
concrete modeling languages and keeps the semantics simple to have more explanatory power. The
formal description of the meta-model provided above builds upon the work of van der Aalst [1999].

Process Model M

Element m

SequenceFlow eActivity a Gateway g

Incl. Gateway oExcl. Gateway x Incl. Gateway +

1..n

1

Figure 1: Meta-model of process models as used in subsequent considerations

2.2 Process model change

Process models are created through a model editing software and are maintained in process model
repositories [Weber et al., 2011; La Rosa et al., 2011; Dijkman et al., 2012]. Changes to process
models are performed through their graphical representations. Such graphical representations usually
consist of shapes and edges of different types to represent the semantics of process model elements.
E.g a rectangular shape with rounded corners to represent a task. When an agent changes a process
model then it performs a set of subsequent atomic change operations until a desired new state of
the model is reached. These atomic change operations are the result of some change rationale – an
agents intent to change a process for some reason. The rationale of change therefore can be related
to a set of compound change operations that has been applied subsequently and follows some order.
This set of change operations can be defined as as a tuple S := (O,A) consisting of an unordered
set of atomic change operations O := {o0, o1, ..., on} and a set of relations A := {a0, a1, ..., am}
that determine the order change operations have been executed. Each atomic change operation
o := oi(ṁ, type, args) is defined through it’s target model element ṁ, the type of operation (“add”,
“delete”, “modify”) and optional arguments args.

2.3 Process model revisions and revision comparison

A revision history of a process model represents different states of a process model over time. These
different states of a process model result from interactions of some kind of agent with the process
model artifact leading to respective changes. The scenario depicted in figure 2 shows two model
interactions that take place in sequence. The first modeler uA opens (checks out) a model revision
ri from a repository at point in time tA,s, changes the model, and submits (checks in) the changes
to the repository at point in time tA,e which leads to model revision ri+1. Subsequently, a second
modeler uB accesses the model revision ri+1, opens it at a point in time tB,s, changes it and submits

3

as well his new model revision at point in time tB,e which leads to a revision ri+2. This scenario
actually reflects a special case of users interacting with a process model. In practice much more
complicated scenarios with multiple agents and interfering changes are possible (see for example in
Erol [2012]; Erol and Neumann [2013]).

save

open

open

save

m

uA rA,i

rB,i uB

ritA,s

tB,e

tB,stA,e
ri+1

ri+2

Figure 2: Multiple agents subsequently changing a process model which leads to revisions
ri, ri+1, ri+2

However, any change of a process model and it’s subsequent submit to a model repository leads to
a revision history R = {rt0 , rt1 , rt2 , .., rtn} where the number of revisions is n+1, the earliest revision
is rt0 and the latest revision is rtn . rtn reflects the current state of the process model. Each revision
has an index ti which reflects the time-stamp of the revision. For each subsequent pair of timestamps
a temporal order ti > ti+1 is defined. This leads to the conclusion that revision rti+1 is the direct
successor of rti . For the purpose of simplicity time-stamp notation is replaced by indices only such
that R = {r0, r1, r2, .., rn} without losing any relevant information for subsequent considerations.
Each revision ri of a process model consists of a set of model elements ri = {m0,m1, ..,mk} where
each model element mj is assumed to have a unique identifier j.

Comparing two subsequent revisions ri, ri+1 requires that unchanged parts of the original revision
are distinguished from those parts that have been changed. Thus a diff is obtained that can be used
to derive change operations that have been applied. Distinction of changed from unchanged parts of
a model can be accomplished by a pairwise comparison of model elements, their unique identifiers,
their properties and references to other model elements. The concept of unique identifiers allows for
a convenient distinction between identical model elements that have remained unchanged, identical
model elements that have been changed in the newer revision, deleted model elements and added
elements. As a result a revision ri can be represented as ri := ri,identical∧equal ∪ ri,added ∪ ri,deleted ∩
ri,identical∧modified where ri,added, ri,deleted, ri,identical∧modified, ri,identical∧equal represent subsets of
model elements that are classified according to the above distinction. A revision difference (short
diff) d then is represented through d := ri,added ∪ ri,deleted ∪ ri,modified.

Having compared and classified changed model parts, it is possible to infer a – yet unordered –
set of atomic change operations that has been applied to an antecedent revision ri. This inference
is accomplished by relating each elementary difference to an atomic change operation, e.g. a newly
added model element in ri+1 to a change operation of type “add”, non-existent element in ri+1

to a change operation of type “delete” and so on. The set of change operations applied to ri can
be defined as as a tuple Si := (O,A) consisting of an unordered set of atomic change operations
Oi := {oi,0, oi,1, ..., oi,n} and a set of relations Ai that is empty as we can not determine the order

4

relations from a revision comparison. A revision may comprise subsets of compound changes scj ⊂ Oi

that refer to some rationale or may refer as a whole to some rationale scj = Oi.

3 Discovering change patterns from revision histories

The term “change pattern” in the context of process model change was probably first introduced
by Weber et al. [2007]. The authors suggest a taxonomy of change patterns but do not base their
findings on a detailed and systematic empirical study of process model changes. Therefore we extend
their notion of change patterns with regard to the work of Alexander [1964]; Gamma et al. [1995]
were patterns are understood as frequently recurring types of design choices or best-practices in
design practice. Accordingly change patterns are descriptions of changes that abstract from actual
applications. They reflect a principal structure of a change rather than its precise implementation.

For the purpose of identifying and classifying change patterns and their respective semantics an
explorative study of revision histories of several process models was conducted. The revision histories
investigated are the result of a large case-study of collaborative process modeling performed between
years 2011 and 2012 Erol [2012]. The case-study resulted in 415 process models and 3859 process
model revisions. For exploring change patterns we selected a subset of process models from the
case-study. Namely we excluded process models with at most one model element4 and less than two
revisions which led to a final set of 204 process models5.

The explorative study of process model revisions was performed in a systematic way. By systematic
we mean that for each process model we compared succeeding model revisions, identified, named and
described model changes and at the same time classified them. Each new model change identified
was checked against already identified change patterns and in case it could not be associated to
existing patterns it was used to build a new class or sub-class. Thus we arrived at a taxonomy of
change patterns.

The identification of model changes from succeeding model revisions was performed in a semi-
automated way. Although the semantics of a model change and it’s classification was performed
visually by a human agent it was strongly supported by computational means. To be concrete we
computed differences between succeeding revisions through detecting newly added and deleted model
elements as well as highlighting them in the respective process visualization (a process diagram). We
used three colors: green for newly added model elements, red for deleted model elements (model
elements that did not exist anymore in the succeeding revision) and yellow for model elements that
have been added and deleted within the same model revision. To facilitate visual comparison and
detection of model changes revisions were scaled to a size that allowed to capture the whole process
model at one sight but detailed enough to recognize small scale changes as well, e.g. change of a
single element. All revisions for a model were listed as metaphoric tiles placed nearby in an open
ended and scrollable list that allowed for back and forth comparison (see figure 3).

Through pairwise comparison of model revisions we finally arrived at a taxonomy that includes
several high-level classes of changes (extension, reduction, parallelization, etc.) and several layers
of subclasses (see figure 4) which represent specializations of their respective super class. Dark
highligted classes are reverse patterns that transform a given state of a process model into its original
state before the application of the change. We symbolized this relation with dashed edges in figure
4. For the procedure of pattern identification and classification we used a simple paper and pencil
method. Each presumed candidate for a pattern was sketched graphically on a dedicated paper card

4these models are the result of a peculiarity of the software environment
5process model data is publicly available on http://www.erol.at/pwiki/xowiki list pages.php

5

Figure 3: Screenshot of a process model revision history and its visualization as a list of tiles to
facilitate identification and classification of changes. The process models represent a book
borrowing process at the university library.

(see figure 24) and given a preliminary pattern name and if feasible assigned to an existing super
class. Problems during classification occurred mainly due to three reasons:

• Model revisions are only timely snapshots of process models. They are the result of a set of
subsequent changes rather than reflecting an isolated semantically well delineated change. e.g.
we experienced that the first revision of a process model already covers the largest part of
the final process model. All extensions and modifications that led to this model state are not
recoverable (see figure 5).

• Model revisions are not necessarily created after a change has been completed from a rationale
point of view. E.g. a modeler chooses to interrupt his change activity and save an intermediate
state of the model as he decided to go for a coffee break. Afterwards he continues and completes
the intended change – the change rationale is scattered over two or more revisions (see figure
6 (a)).

• Model revisions not necessarily include only one particular change pattern but multiple inter-
twined patterns that makes them difficult to distinguish, e.g. a modeler extends the flow of
activities by inserting several activities and at the same time branched the same sequence of
activities by inserting a gateway (see figure 6 (b)).

Nevertheless, the large number of process models and attached revisions made it possible to
extract a large number of unambiguous patterns that formed the basis of our pattern taxonomy. The
possibility of tracking changes over more than one revision helped to reconstruct distributed change

6

Extension

Serial Extension Parallel Extension

InsertionAppending Prepending

Alternative Extension

Intitial Additional Intitial Additional

Iterative Extension

Split Join Complete Split Join Complete

Parallelization Alternation Serialization Commutation

Change

Reduction

Figure 4: Change pattern taxonomy. Nodes represent classes of changes (change patterns) and edges
represent “is-a” relations ships read from bottom to top.

A B

B

A

BA

BA

B

A

ri

ri+1

Figure 5: Visible and hidden revisions.

patterns. The problem of intertwined change patterns proved to be not easily solvable. However, for
classification purposes such change patterns were treated as separate patterns if recognizable and
else disregarded.

4 Describing change patterns through a pattern language

Classifying change patterns required a dedicated language that abstracts from individual pattern
instances. For this purpose we developed a pattern language in the sense of the well-known design
pattern concept [Gamma et al., 1995] together with a set of graphical symbols to illustrate change
patterns. The set of graphical symbols along with their semantics is depicted in figure 7. The graph-
ical symbols where designed with the need to describe change operations regardless their concrete
nature. This means that we aimed at providing symbols to describe model parts such as sequences of
activities, parallel or alternative branches of activity sequences without having to specify the concrete
number of activities or branches included. We also added gateway symbols to describe the logical
flow of activities according to the meta-model mentioned above. The little ⊕ and 	 symbols are
used to denote change operations of type “add” or “delete”. The large arrow in gray is used to

7

A B

ri

A B

ri+1

A B

ri+2
(a)

BA

A B

ri

ri+1
(b)

Figure 6: (a) Changes scattered across multiple revisions. (b) Intertwined changes.

denote the direction of a change – the order of revisions ri → ri+1.

X

zero or more edges and activitiy nodes

exactly one edge

a sequence of zero or more activity nodes

X a sequence of at least one activity nodes

two edges and at least one new activity node

-

+

removed element

added element

is preceding revision of

X at least one sequence of at least one activity node
between two gateway nodes

a sequence of zero or more activity nodes
between two gateways

X

at least one sequence of zero or more activity
nodes between two gateway nodes

X

Figure 7: Set of graphical symbols to illustrate change patterns

In the following subsections each change pattern is described in detail. For this purpose we use
a template that contains a fixed set of properties, thus providing a practical way to consistently
describe and collect such patterns. We use a pattern id to identify a pattern (e.g. Ext.Ser.Ins),
a descriptive name and a more explanatory description. We also provide an illustration of the
change pattern where we use the graphical language presented above. The signature property is
used to provide a precise search criterion for detecting a respective change pattern given that we have
the subset of change operations or affected model elements at hand. The algorithmic implementation
is discussed in a later chapter. Finally, we provide a property to capture the rationale of the change
pattern. The latter is important as we aim to support a modeler in understanding and interpreting

8

model revisions. As an example we use a standard online shopping process.

4.1 Pattern Ext.Ser.R: Serial extension to right, appending

Description Additional activity elements are appended to an existing sequence of activities.

Illustration see figure 8.

A A X+
+

Figure 8: Change pattern: Serial extension to right

Signature At least the following atomic change operations are applied to a terminal activity:
add sequenceflow(A,X), add activity(‘X’).

Rationale This pattern is usually applied when a process turns out to be not complete in the sense
that additional activities have to be performed or additional events are expected to occur at the end
of the process to achieve a predefined goal, result or output.

Example For the payment process at Amazon one needs to additionally enter the three digit security
code to complete the order.

Category Extension patterns

Related change patterns

Red.Ser.R is reverse of Ext.Ser.R.

4.2 Pattern Ext.Ser.L: Serial extension to left, prepending

Description Additional activity elements are prepended to an existing sequence of activities.

Illustration see figure 9.

A AX +
+

A

Figure 9: Change pattern: Serial extension to left

9

Signature At least the following atomic change operations are applied to an initial activity: add activity(X),
add sequenceflow(X,A).

Rationale This pattern is usually applied when a process turns to be not complete in the sense
that additional activities have to be performed or additional events are expected to occur at the
beginning of the process to achieve a predefined goal, result or output.

Example To read the content of a web page one needs to select the language or location before.

Category Extension patterns

Related change patterns Red.Ser.L is reverse.

4.3 Pattern Ext.Ser.Ins: Serial insertion

Description Additional activity elements are placed between two succeeding activity elements.

Illustration see figure 10.

A B A BX- +
+

+

Figure 10: Change pattern: Serial insertion

Signature At least the following atomic change operations are applied: delete sequenceflow(A,B),

add activity(X), add sequenceflow(A,X), add sequenceflow(X,B).

Rationale This pattern is usually applied when a process needs to be refined to achieve a predefined
goal, result or output. This means that additional activities need to be performed or additional events
are expected to occur in the course of a process.

Example A sign in activity is needed in the course of an online ordering process. After browsing
the catalog and adding products to a cart a sign-in activity is required to proceed with check-out
activity.

Category Extension patterns

Related change patterns Red.Ser.Ins is reverse.

10

4.4 Pattern Ext.Par.Ini.Comp: Complete Initial Parallel Extension

Description An additional activity sequence is added in parallel to an other activity element as part
of a sequence of activities. Therefore two sequence flow edges are deleted, two parallel gateways are
inserted, an additional activity element is inserted.

Illustration see figure 11.

A B A C

X

C

B

- - +

+

+
+

+

+

+

Figure 11: Change pattern: Complete Initial Parallel Extension

Signature ..
delete sequenceflow(A,B), delete sequenceflow(B,C), add activity(X), add gateway(G1),
add gateway(G2), add sequenceflow(A,G1), add sequenceflow(G1,B), add sequenceflow(B,G2),
add sequenceflow(G2,C), add sequenceflow(G1,X), add sequenceflow(X,G2).

Rationale This pattern is usually applied when a process needs additional activities to achieve a
predefined goal, result or output. Additional activities are added in parallel to other activities which
means that they do not require each other as a prerequisite. The process converges after parallel
activity sequences are completed.

Example For an order fulfillment process at Amazon the activity of picking and packing is extended
with a parallel activity of planning for an optimal route for shipping.

Category Extension patterns

Related change patterns Red.Par.Fin.Comp is reverse.

4.5 Pattern Ext.Par.Add.Comp: Complete Additional Parallel Extension

Description An additional activity element is placed in parallel to an already existing set of parallel
activity branches. Additional sequence flows and an additional activity element are inserted.

Illustration see figure 12.

Signature ..
add activity(X), add sequenceflow(G1,X), add sequenceflow(X,G2).

11

A

A

+
+ +X

Figure 12: Change pattern: Complete Additional Parallel Extension

Rationale This pattern is usually applied when a process needs additional activities to achieve a
predefined goal, result or output. Additional activities are needed to be performed in parallel to other
activities. The process converges after all parallel activity sequences are completed.

Example In addition to picking, packing and finding an optimal route for shipping as well the
invoice creation and printing activity is added to be performed in parallel.

Category Extension patterns

Related change patterns Red.Par.Comp is reverse.

4.6 Pattern Ext.Alt.Ini.Comp: Complete Initial Alternative Extension

Description A sequence of activities (or a single sequence flow) is extended with alternative se-
quences of activities (or a single sequence flow). Therefore alternative gateways are inserted along
with additional activities.

Illustration see figure 13.

A A CC +

+

+
X

B

B
-

+

Figure 13: Change pattern: Complete initial alternative extension

Signature ..
delete sequenceflow(A,C), add activity(X), add gateway(G1), add gateway(G2), add sequenceflow(A,G1),
add sequenceflow(G1,B), add sequenceflow(B,G2), add sequenceflow(G2,C), add sequenceflow(G1,X),
add sequenceflow(X,G2).

Rationale This pattern is usually applied when a process needs to be refined in order to cover
variations in the flow of activities.

12

Example The invoice creation process at Amazon is extended for EU countries as different tax and
customs regulations apply. Different informations need to be printed on the invoice and declarations
have to be made for customs compliance. The process therefore needs to be split, an alternative
branch has to added for orders that originate in EU countries.

Category Extension patterns

Related change patterns Red.Alt.Ini.Comp is reverse.

4.7 Pattern Ext.Alt.Add.Comp: Complete Additional Alternative Extension

Description An additional activity element is placed as an alternative branch to an already existing
set of alternative activity branches. Additional sequence flows and an additional activity element are
inserted.

Illustration see figure 14.

+
X

A

A

Figure 14: Change pattern: Complete additional alternative extension

Signature ..
add activity(X), add sequenceflow(G1,X), add sequenceflow(X,G2).

Rationale This pattern is usually applied when variations of a process need to be extended with
an addtional variation (alternative flow of activities).

Example The invoice creation process at Amazon which covers both US market and EU is extended
for China. Different informations need to be printed on the invoice and declarations have to be made
for customs compliance. The process therefore needs to be extended, an alternative branch has to
added for orders that originate in China.

Category Extension patterns

Related change patterns Red.Alt.Add.Comp is reverse.

13

4.8 Pattern Ext.Iter: Iterative Extension

Description A sequence of activities is extended with a loop back branch. Therefore alternative
gateways are inserted and a sequence flow is inserted that leads back to the first activity in the
sequence of activities.

Illustration see figure 15.

B A CC
+ +

X

-

+

-
A B

+ +

Figure 15: Change pattern: Iterative extension

Signature ..
delete sequenceflow(A,B), delete sequenceflow(B,C), add activity(X), add sequenceflow(A,G1),

add sequenceflow(G1,B), add sequenceflow(B,G2), add sequenceflow(G2,C), add sequenceflow(G2,G1).

Rationale This pattern is applied when a sequence of activities may be repeatedly performed until
a predefined goal, result or output is achieved or condition is fulfilled.

Example At Amazon a customer may repeatedly browse the catalog, select products and add them
to the shopping cart until she decides to check-out.

Category Extension patterns

Related change patterns Red.Iter is reverse.

4.9 Pattern Parallel: Parallelization

Description Activity elements that are arranged as a sequence are now rearranged in parallel. For
this purpose parallel gateways are inserted and associated sequence flow edges must be deleted and
added.

Illustration see figure 16.

Signature add gateway(G1), add gateway(G2), delete sequenceflow(A,B), add sequenceflow(G1,A),
add sequenceflow(G1,B), add sequenceflow(A,G2), add sequenceflow(B,G2).

Rationale This pattern is usually applied when a process needs to rearranged to reduce lead time.
Although the same set of activities is performed as before the lead time from process start event to
process end event is reduced.

14

B D

D

B
C

- - EA - -

Figure 16: Change pattern: Parallelization

Example The invoice creation activity which has been performed after the packing activity is
arranged in parallel to the packing an picking process to reduce devlivery time (time-to-customer).

Category Adaption patterns

Related change patterns Serial is reverse.

4.10 Pattern Alter: Alternation

Description Activity elements that are arranged as a sequence are now rearranged as alternative
branches. For this purpose alternative gateways are inserted and associated sequence flow edges
must be deleted and added.

Illustration see figure 17.

B D

D

B
C

- - EA - -

Figure 17: Change pattern: Alternation

Signature add gateway(G1), add gateway(G2), delete sequenceflow(A,B), add sequenceflow(G1,A),
add sequenceflow(G1,B), add sequenceflow(A,G2), add sequenceflow(B,G2).

Rationale This pattern is applied when sequences of activities are changed because of constraints
that allow only for exclusive execution of activities.

Example A payment process is changed in a way that mixing of payment methods (credit card
payment and bank account withdrawal) for one invoice payable is replaced by a logic where either
credit card payment or withdrawal is possible but not both.

15

Category Adaption patterns

Related change patterns

4.11 Pattern Commut: Commutation

Description Activity elements are replaced with each other with regard to their position in a
sequence of activities.

Illustration see figure 18.

B DC

-
EA - -

D BC EA
+ + +

Figure 18: Change pattern: Commutation

Signature delete sequenceflow(B,D), add sequenceflow(D,B).

Rationale This pattern is usually applied when it turns out that the sequence of activities performed
is not optimal to achieve a predefined goal. Rearranging two activities

Example Exchanging invoice creation activity with creditability check as it turns out that exact
amount including taxes and shipping fees is needed beforehand to perform a valid creditability check.

Category Adaption patterns

Related change patterns Commut is reverse.

5 Developing algorithms for automated detection of change patterns
in process model revisions

In this section we describe several algorithms that we designed for the purpose of detecting change
patterns in a set of atomic change operations. One of these Algorithm 1 computes the difference
between two succeeding model revisions. Algorithm 2 is the main routine that inspects the sets of
change operations and provides entry points for sub routines that are able to check for the existence
of a particular change pattern as specified in section 4.

16

5.1 Basic algorithms for preprocessing

Algorithm 1 processes succeeding revisions of a process model ri, ri+1 and compares them to identify
added, deleted and unchanged model elements. Model elements are distinguished into nodes and
edges. The variables holding the revisions of a process model are collections of model elements.
The comparison is performed through a nested loop that compares element by element. We do this
in both directions to detect both added elements – those that are not existing in ri – and deleted
elements – those that do not exist anymore in ri+1. In the course of doing so we also identify
those elements that are identical and have not been changed at all. Finally we obtain collections for
added elements nodesadded, edgesadded, deleted elements nodesdeleted, edgesdeleted and unchanged
elements nodesidentical, edgesidentical. These collections represent the model diff and are used as
input for all subsequent processing.

//declare data variables

data: ri, ri+1 as list; nodesdeleted, nodesidentical, edgesadded, edgesdeleted as list;

//loop through elements

1 foreach mi in ri do
2 is found := false;
3 foreach mi+1 in ri+1 do

//check for identical elements

4 if mi === mi+1 then
5 if mi.type == ’node’ then append(nodesidentical, mi);
6 if mi.type == ’edge’ then append(edgesidentical, mi);
7 is found := true; break;

8 end

9 end
//

10 if not is found then
11 if mi.type == ’node’ then append(nodesdeleted, mi);
12 if mi.type == ’edge’ then append(edgesdeleted, mi);

13 end

14 end
15 foreach mi+1 in ri+1 do
16 is found := false;
17 foreach mi in ri do

//check for identical elements

18 if mi === mi+1 then
19 is found := true; break;
20 end

21 end
//

22 if not is found then
23 if mi+1.type == ’node’ then append(nodesadded, mi+1);

24 if mi+1.type == ’edge’ then append(edgesadded, mi+1);

25 end

26 end

Algorithm 1: Main algorithm to compute difference from revisions

Algorithm 2 takes the previously obtained diff (set of collections of unchanged, added, deleted
nodes and edges) as input and searches for subsets of nodes which are somehow connected and
therefore are candidates for a change pattern. To narrow the search space we assume that both
extensions of a model or reductions either refer to a single node or to a pair of nodes from the set of
identical and unchanged nodes nidentical. Thus changes that do not refer to any existing part of a
model are omitted. According to our taxonomy of change patterns we distinguish between extension
to the right where a model is extended by appending a sequence of activity nodes to a node without
outgoing edges (a terminal node) and extensions to the left where a model is extended by prepending
a sequence of activities to a node without ingoing edges (initial node) and insertions where a model
is extended by inserting a sequence of activities between two succeeding activity nodes.

In algorithm 2 we refer to algorithm 3 which we use to identify subsets of connected model elements
from a model diff. The algorithm loops through all model elements (added and deleted) and searches
for an edge that refers to the reference node(s) through its source or target property. Subsequently
it searches for the next node that has been referred to by the source or target property of the edge,

17

//declare data variables

data: nsource, ntarget as object; type as string; nodesadded, nodesdeleted, nodesidentical, edgesadded, edgesdeleted as list

//loop through all identical and unchanged nodes

1 foreach n1 in nodesidentical do
//if node is a terminal node (no outgoing edges)..

2 if is terminal(n1) then
//..check for extension patterns to right

//..get traces of added and deleted elements

3 tracesadded := get traces between two nodes(n1, null, eadded)
4 tracesdeleted := get traces between two nodes(n1, null, edeleted)

//check for change pattern Ext.Ser.R

5 ...see algorithm 5
//check for other change patterns

6 ...

7 end
//if node is a inital node (no ingoing edges)..

8 if is initial(n1) then
//..check for extension patterns to left

//..get traces of added and deleted elements

9 tracesadded := get traces between two nodes(null, n1, eadded)
10 tracesdeleted := get traces between two nodes(null, n1, edeleted)

//check for change pattern Ext.Ser.L

11 ...see algorithm 6
//check for other change patterns

12 ...

13 end
//.. and pairwise combinations of identical and unchanged nodes

14 foreach n2 in nodesidentical do
//get traces..

15 if n1! == n2 then
//..of added and deleted elements

16 tracesadded := get traces between two nodes(n1, n2, eadded)
17 tracesdeleted := get traces between two nodes(n1, n2, edeleted)

//check for change pattern Ext.Ser.Ins

18 ...see algorithm 4
//Check for other change patterns

19 ...

20 end

21 end

22 end

Algorithm 2: Main algorithm to detect change patterns from a revision

then it searches for the next edge and so on. Basically we use a depth-first approach (see for example
in [Even, 2011] p. 41) that recursively steps through a directed graph and returns all possible paths
as a collection of traces. Traces are themselves collections of connected model elements (sequences
of activity nodes). Having a trace collection for each added or deleted model part it is possible to
examine these traces for the occurrence of a signature that can be used to identify a change pattern.
From a computational point of view this algorithm is the most resource intensive part.

5.2 Exemplary algorithms for detection of change patterns

In this section we present exemplary algorithms that check each collection of traces for the occurrence
of a pattern signature. As explained previously a signature is defined as a set of change operations
that is at least needed to identify a change pattern. To accomplish this task we first check for the
type of node the trace refers to. In the case of a Serial Insert pattern this means that we have to
check each pair of nodes if they are of type ‘activity’ as a serial insert between gateway nodes would
be a Complete Additional Alternative Ext.Add.Alt.Comp or Parallel Ext.Add.Par.Comp Extension
pattern.

Algorithm 4 shows a routine that checks for the existence of a Serial Insertion Ext.Ser.Ins

pattern. For a pair of identical and unchanged nodes we check whether a single sequence flow edge
(trace-length equals 1) exists that has been deleted and refers to the two nodes. To be precise we
check if the first edge has node n1 as its source and whether the last edge in the trace has node n2

as its target. Next we check whether a trace with trace-length greater than 1 exists that has been
subsequently added between the two nodes.

18

function get traces between two nodes(n1, n2 as object, edges as list)
data: traces as list, trace as string

1 foreach e in edges do
//check if an outgoing edge exists that refers to left node

2 if e.source == n1 then
//if last element in trace or terminal

3 if e.target == n2 || is terminal(e.target) then
//append last edge to trace

4 append(trace, e)
//append trace to collection of traces

5 append(traces, trace)

//if not last element in trace

6 else
//append identified edge to trace

7 append(trace, e)
//append target node of edge as well to trace

8 append(trace, e.target)
//recursively look for next elements in trace

9 get traces between two nodes(e.target, n2)

10 end

11 end

12 end

13 return traces

end

Algorithm 3: Algorithm to get added or deleted activity sequences (traces) between two nodes

//check for change pattern Ext.Ser.Ins

1 if length(tracesdeleted) > 0 and length(tracesadded) > 0 then
//check context nodes are of type activity

2 if n1.type == ′activity′ and n2.type == ′activity′ then
//check if exactly one trace exists that contains a single sequence flow edge

3 foreach trace in tracesdeleted do
4 if length(trace) == 1 then
5 deletion pattern exists := true
6 break

7 end

8 end
//if deletion pattern has been found, ..

9 if deletion pattern exists then
10 foreach trace in tracesadded do

//check if exactly one trace exists that contains at least two sequence flow edges and one activity node

11 if length(trace) > 1 then
//collect detected change pattern

12 append(patterns, array(′Ex.Ser.Ins′, n1, n2, tracesadded, tracesdeleted))
13 break

14 end

15 end

16 end

17 end

18 end

Algorithm 4: Algorithm to detect a Ext.Ser.Ins change pattern

Algorithm 5 shows a routine that checks for the existence of a Serial Extension to Right Ext.Ser.R
pattern. For a terminal node n from nodesidentical we check whether it is of type ‘activity’ and if
at least one trace exists that has been added and refers to the node n. The trace needs to contain
at least more than one model element. In algorithm 6 a similar routine is illustrated for model parts
that have been prepended to an initial activity node. We do not explain this algorithm here as it is
analogue to 5.

6 Implementation

The previously described algorithms were implemented in a publicly available open source process
modeling environment PWiki6. PWiki is a research prototype and as the name suggests is designed
to support collaborative distributed process modeling in the cloud Erol [2012]. The central object
of work in PWiki is a page. Pages are created, edited, deleted and linked to each other. The total

6https://launchpad.net/weasel2

19

//check for change pattern Ext.Ser.R

//check if terminal node is of type activity

1 if n.type == ′activity′ then
//check if number of traces found for node is not empty

2 if length(tracesadded) > 0 then
//collect detected change pattern

3 append(patterns, array(′Ex.Ser.R′, n, null, tracesadded, null))
4 break

5 end

6 end

Algorithm 5: Algorithm to detect a Ext.Ser.R change pattern

//check for change pattern Ext.Ser.L

//check if terminal node is of type activity

1 if n.type == ′activity′ then
//check if number of traces found for node is not empty

2 if length(tracesadded) > 0 then
//collect detected change pattern

3 append(patterns, array(′Ex.Ser.L′, null, n, tracesadded, null))
4 break

5 end

6 end

Algorithm 6: Algorithm to detect a Ext.Ser.L change pattern

of linked pages forms a body of knowledge which can be dynamically extended by arbitrary authors
anytime from anywhere. Pages in PWiki are extended with a process model editor named graphel7

that allows for modeling processes according to different process modeling notations (e.g. BPMN
2.0, EPC). To ensure traceability and recoverability of changes in PWiki each page maintains a
revision history that reveals the date and time of a page revision, the author and if maintained by
the author comments regarding the changes applied. For the purpose of validating our approach
we extended this revision history feature with the capability of detecting change patterns in model
revisions. Thus providing automatically created meaningful annotations of model revisions. By
now the feature has been implemented for BPMN 2.0 based process models and covers selected
extension patterns. Namely, Ext.Ser.R, Ext.Ser.L, Ext.Ser.Ins, Ext.Par.Ini, Ext.Par.Add,
Ext.Alt.Ini, Ext.Alt.Add

6.1 Support for standards based modeling languages

Supporting change pattern detection from BPMN 2.0 based process model diffs requires some ex-
tensions to the above presented approach. BPMN 2.0 is a rather complex notation based on a
comprehensive meta model that covers all aspects for describing software enabled business pro-
cesses. Even the set of basic modeling elements of BPMN 2.0 covers twelve elements, the extended
set of elements covers a multiple of twelve elements including all variations of base elements that
are necessary to describe business processes. However in the first phase of our implementation we
included only those elements that are needed to describe the control flow of a process. Elements to
describe other aspects of a process (e.g. resources, data) are not included, see figure 21. For imple-
menting the above general detection algorithms the introduction of additional elements required the
differentiation between different types of activities (e.g. activities, tasks), different types of events
(e.g. start, end and intermediate) events and different types of gateways (e.g. exclusive versus
inclusive and parallel gateways). For example, within the exemplary algorithm Ext.Ser.Ins (see
algorithm 4) this led to a more complex case-handling in line 2 where changes between different
types of activity nodes needed to be handled differently.

In figure 22 a screenshot of the process model editor is shown that is part of the process modeling

7https://launchpad.net/graphel

20

environment PWiki. As can be seen from the screenshot the model editor is embedded in a HTML
form page that is used to create process model pages (see figure 23) including meta information such
as the title of the model, keywords and data about the time, author of creation and last modification.
Each of which is important information for maintaining a related revision history.

6.2 Visual presentation of change patterns

Figure 19 shows the revision history of a process model page in tabular from. It includes information
on the date and time of the creation of the revision, the author and the title of the page. It reveals
as well information on the number of model elements (nodes an edges) the current revision consists
of and the number of elements added and deleted. The latter information is the result of model
comparison performed before detection of change patterns. In the last column the detected change
pattern with their respective short names can be seen and number of occurrence can be seen. In
some rows one can see empty cells – no change pattern detected – although elements have been
added or deleted. This is due to the fact that some of the predefined criteria has not been fulfilled to
detect a change pattern. In other words that individual atomic change operations have been made
that could not be related to some of the change patterns from our taxonomy. I considered these
cases as candidates for further examination as they could potentially be special cases that where not
considered beforehand. Other rows from the revision history show that the process model itself has
not been changed but the title which as well resulted in empty cells regarding the change patterns.

Figure 19: PWiki revision history feature

21

7 Related work

Our work mainly relates to three other approaches that we like to mention here. Küster et al. [2008]
introduced so called compound changes which represent minimal meaningful sets of atomic change
operations. Additionally, so called sequences of compound changes are introduced that represent sets
of dependent change operations where for each change operation at least one dependency exists.
Change operations may not belong to more than one sequence and may not have any dependency
with change operations from other sequences. However, the authors limited their approach to a
specific meta-model and a predefined set of compound changes that do not reflect the rationale of
change patterns applied by modelers. The approach presented focuses mainly on the problem of
detecting compound model changes from process model comparisons in scenarios where a change
log (a timely order of changes) does not exist. They show as well how to present these logically
connected changes to a modeler during merging model revisions.

The first explicit investigation of change patterns in the context of process modeling is provided
by Weber et al. [2008]. In their work they classify and describe process model changes through a
pattern language. Their change patterns are the result of two empirical studies of 59 process models
and their documented adaptions. They also describe the formal semantics of process model patterns
in [Rinderle-Ma et al., 2008] and suggest a set of software features to support typical process model
changes according to the patterns identified. Their work differs in several ways. First their source of
data for identifying change patterns is not clearly documented as they do not give evidence of the
process model revisions studied. Second, they do not build a taxonomy – a classification of change
patterns and do not explain relations between them sufficiently. Third, they do not provide a means
to detect a change patterns although they have formalized their semantics in a comprehensive and
rigorous way.

Langer et al. [2013] investigated change patterns (they call them diff patterns) in the context
of UML8 class models. They provide fundamental work with regard to specifying change patterns
through so called signatures - sets of primitive change operations that are used to identify a particular
change pattern. They also provide algorithms for detecting change patterns in a three-phased ap-
proach. Accordingly, In the first phase a model diff is checked for the occurrence of change patterns
through so called signatures which in contrary to our approach reflect processable representations of
the involved set of atomic change operations and the diff model. In the next steps change patterns
are checked whether corresponding pre- and postconditions exist within the original revision and the
final revision that prove the actual application of a change.

8 Conclusion and Outlook

In this report we document recent research that conducted as part of a larger research project
that aims at investigating concepts, methods and tools to facilitate model-driven engineering of
organizational processes. The approach described here aims at providing a taxonomy of typical
changes to process models and their rationale. We used a pattern language to comprehensively
identify and describe change patterns observed in a large collection of process models and their
revision histories. The pattern language used consists of a graphical language to describe these
patterns unambiguously and a pattern template to capture the rationale and relations between change
patterns. We also postulated a set of algorithms that shows how such patterns can be detected from

8http://www.uml.org

22

process model revision comparisons where no timely order of involved atomic changes (a change log)
exists.

The contribution of this research effort is therefore threefold:

• We provide an empirically grounded taxonomy of change patterns in process modeling.

• We provide a language to describe the properties of such change patterns and their rationale
which is important with regard to software-based modeling support.

• We provide algorithms that show how such change patterns can be detected from model
comparisons in the absence of a change log.

Our future research efforts will aim at providing algorithmic implementations of all patterns and
a modeling environment that can be used to generate respective algorithms automatically. What
remains as well open is the evaluation of the algorithms so far. For this purpose we plan to run the
algorithms against the large corpus of process models we used to identify patterns. This will close the
loop of manual identification to formalization, validation and evaluation of algorithmic performance.

9 References

Alexander, C. (1964). Notes on the Synthesis of Form, volume 5. Harvard University Press.

Davies, I., Green, P., Rosemann, M., Indulska, M., and Gallo, S. (2006). How do practitioners use
conceptual modeling in practice? Data and Knowledge Engineering, 58(58):358–380.

Dijkman, R., Rosa, M., and Reijers, H. (2012). Managing large collections of business process
models—current techniques and challenges. Computers in Industry, 63(2):91.

Erol, S. (2012). Design and Evaluation of a Wiki-based Collaborative Process Modeling Environment.
PhD thesis, WU Vienna.

Erol, S. and Neumann, G. (2013). Handling concurrent changes in collaborative process model
development: a change-pattern based approach. In Enterprise Distributed Object Computing
Conference Workshops (EDOCW), 2013 17th IEEE International, pages 250–257. IEEE.

Even, S. (2011). Graph algorithms. Cambridge University Press.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design patterns: elements of reusable
object-oriented software. Addison-Wesley.

Giaglis, G. M. (2001). A taxonomy of business process modeling and information systems modeling
techniques. International Journal of Flexible Manufacturing Systems, 13(2):209–228.

Küster, J., Gerth, C., Forster, A., and Engels, G. (2008). Detecting and resolving process model
differences in the absence of a change log. In Proc. 6th Int. conf. on Business Process Management.
BPM., volume 5240, page 244. Springer.

La Rosa, M., Reijers, H., Van der Aalst, W., Dijkman, R., Mendling, J., Dumas, M., and Garćıa-
Bañuelos, L. (2011). Apromore: An advanced process model repository. Expert Systems with
Applications, 38(6):7029–7040.

23

Langer, P., Wimmer, M., Brosch, P., Herrmannsdörfer, M., Seidl, M., Wieland, K., and Kappel,
G. (2013). A posteriori operation detection in evolving software models. Journal of Systems and
Software, 86(2):551–566.

Mens, T. (2002). A state-of-the-art survey on software merging. IEEE Transactions on Software
Engineering, 28:449–461.

OMG (2011). Business Process Model and Notation (BPMN) Version 2.0. Technical report, OMG.

Rinderle-Ma, S., Reichert, M., and Weber, B. (2008). On the formal semantics of change patterns in
process-aware information systems. In Conceptual Modeling-ER 2008, pages 279–293. Springer.

Scheer, A. W. (1998). ARIS – vom Geschäftsprozess zum Anwendunssystem. Springer.

van der Aalst, W. (1999). Formalization and verification of event-driven process chains. Information
and Software technology, 41(10):639–650.

Weber, B., Reichert, M., Mendling, J., and Reijers, H. A. (2011). Refactoring large process model
repositories. Computers in Industry, 62(5):467–486.

Weber, B., Reichert, M., and Rinderle-Ma, S. (2008). Change patterns and change support
features–enhancing flexibility in process-aware information systems. Data & knowledge engineer-
ing, 66(3):438–466.

Weber, B., Rinderle, S., and Reichert, M. (2007). Change patterns and change support features in
process-aware information systems. In Advanced IS Engineering, pages 574–588. Springer.

10 Appendix

24

Figure 20: Screenshot of list of models that were used to identify and classify changes. The models
are publicly available at http://www.erol.at/pwiki/xowiki list pages.php

BaseElement

FlowElement

FlowNode SequenceFlow

EventActivity Gateway

ThrowEventCatchEvent

StartEvent IntmCatchEvent IntmThrowEvent EndEvent

Incl. GatewayExcl. Gateway Incl. GatewayTask

Figure 21: Implemented part of BPMN 2.0

25

Figure 22: PWiki process model editor

Figure 23: PWiki process model page

26

Figure 24: Paper card used during studying and recording model revisions

27

	Introduction
	Basic concepts
	Process model
	Process model change
	Process model revisions and revision comparison

	Discovering change patterns from revision histories
	Describing change patterns through a pattern language
	Pattern Ext.Ser.R: Serial extension to right, appending
	Pattern Ext.Ser.L: Serial extension to left, prepending
	Pattern Ext.Ser.Ins: Serial insertion
	Pattern Ext.Par.Ini.Comp: Complete Initial Parallel Extension
	Pattern Ext.Par.Add.Comp: Complete Additional Parallel Extension
	Pattern Ext.Alt.Ini.Comp: Complete Initial Alternative Extension
	Pattern Ext.Alt.Add.Comp: Complete Additional Alternative Extension
	Pattern Ext.Iter: Iterative Extension
	Pattern Parallel: Parallelization
	Pattern Alter: Alternation
	Pattern Commut: Commutation

	Developing algorithms for automated detection of change patterns in process model revisions
	Basic algorithms for preprocessing
	Exemplary algorithms for detection of change patterns

	Implementation
	Support for standards based modeling languages
	Visual presentation of change patterns

	Related work
	Conclusion and Outlook
	References
	Appendix

